Transport in a Hollow Cylindrical Membrane
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SYNOPSIS

A detailed treatment has been given of radial transport in and through a hollow cylindri-
cal membrane for two initial distributions of diffusant within the membrane of practical
interest. Expressions are given for concentration distributions of diffusant and for unit
length of membrane, amounts present, fluxes through radial planes, and amounts
transported up to time ¢ across those planes. Some consideration has been given to
forward and reverse flow and to relations between flow quantities characteristic of
those transports. © 1997 John Wiley & Sons, Inc.

INTRODUCTION

Hollow cylinders of uniform circular cross-section
are an important type of membrane. Solutions for
transport in such media are, in general, less well-
documented than their counterparts for slab
membranes and, moreover, are usually of more
complex form. In an earlier note,' adsorption and
desorption time-lags associated with purely ra-
dial transport under fixed (time-independent)
boundary conditions were given for a homoge-
neous hollow circular cylinder and for a homoge-
neous spherical shell, both with constant diffusion
coefficient D. In this note, corresponding tran-
sient state solutions for transport in and through
a hollow circular cylinder are presented in order
to provide a detailed source-reference for a num-
ber of initial and boundary conditions of practical
interest to supplement cases already consid-
ered.>?

The differential equation of transport for the
hollow cylinder is:

2
8_0_18 8C _D18C'+8§ (1)
ot r or 8r r Or or

and D is considered to be constant in what follows.
With the initial and boundary conditions:
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C(R.,t) = C, =constant, ¢ >0
C(R,,t) = Cy = constant, ¢t >0
C(r,0)=f(r), R1<r<R2 (2)

the solution to eq. (1) is?

CiIn(Ry/r) + Coln(r/R,)

C(r,t) =
(r, 1) In(Ry/R;)
— i {CZJO(aan) - ClJo(anRZ)}
n=1 Jg(aan) - Jg(anRz)
X Jy(anRy) U, (aryr)e om0
L g a3d3(aaRy) Uyayrle “=™
2 4 Ji(anRy) — Ji(anRy)
RZ
X f r-f(r)-Uy(ayr)dr (3)
Ry
where

U,(ar) = J,(ar)Y,(aRs) — J(aR2)Y,(ar) (4)
and the «, are the positive roots of

U,(aR,) = J,(aR,)Y,(aRy)
— Jo(aR3)Y(aR;) =0 (5)
J, and Y, are zero-order Bessel functions of the

first and second kind, respectively. The roots of
eq. (5) are all real and simple and to each positive
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root there corresponds a negative root (—) a.? A
short table of these roots has been given by Car-
slaw and Jaeger? and is reproduced by Crank.?

In what follows, two special cases of the initial
distribution f(r) designated (A) and (B) are con-
sidered.

Case (A)

The concentration is initially uniform throughout
the membrane. We write

f(r) = C; = constant

so that from eq. Al

Ry
f r-f(r)U,(ayr) dr

Ry

_ 2Ci{Jo(anR1) - Jo(anRZ)} (6)
- ra;do(anRy)

and eq. (3) becomes

_ CiIn(Ry/r) + Coln(r/Ry)

B In(R,/R;)

- i {Codo(anRy) — C1do(anRy))
n=1 Jg(aan) - Jg(anRZ)

X Jo(anR1) Uy(anr)e o>

= Jo(anR)U,(ar)e 3
+ 7C;
™Ci 2 T (aRy) + Ju(aRy)

n=1

C(r,t)

(7)

as given by Crank.?

Case (B)
An initial steady-state distribution for the (fixed)
boundary conditions
C(Rl, t) = Ci, t>0
C(R,,t)=C4,t>0

is established. Then

Ciln(R,/r) + C4ln(r/R;)

fr) = In(R,/R,)

which is the steady-state distribution for the

boundary concentrations C] and C} as can be seen
by reference to eq. (3) with ¢ — o,

R2
f rf(r)U,(a,r) dr

Ry

_ Ciln(Rz) - Céln(Rl) R2
B In(R,/R;) R

r-U,(ayr)dr

(Ci—Cy) (™
- -1 ~U,(ayr) d 8

In(Ry/R;) Jr, rIn(r) (aur)dr (8)
which with eq. A(1) and A(2) reduces to

RZ
J. rf(r)U,(a,r) dr

Ry

_ —2{C1d,(a,Rs) — C3d,(a,R1)} (9)
naid,(a,Ry)

and eq. (3) becomes

_ Clln(Rz/r) + Czln(r/Rl)

C(r,t
(rs ) In(Ry/Ry)
-7 % {CZJo(aan) - ClJo(anRZ)}
n=1 Jg(aan) - Jg(anRZ)
X Jo(anR ) Uy(ayrle =i
g i {Cd,(anRy) — C1d,(a,Ry)}
n=1 Jg(aan) - Jg(anR2)
X Jo(anR)Uy(anr)e =i (10)
When C] = C5 = C; eq. (10) reduces to equation
(7).

AMOUNT OF DIFFUSANT, M,, IN
HOLLOW CYLINDER OF UNIT LENGTH

In general

R

M, = | 2nr-Cr,t)dr (11)

Ry
which with eq. A(1) and (3) yields

m(Cy — Cz)(R% _R%)
21n(R2/R1)

— 47 g {C2Jo(anR1) - ClJo(anRZ)}eiarlet
ai{Jo(aan) + Jo(anRZ)}

n=1

M,=r(C,R%— CR%) +




TRANSPORT IN A HOLLOW CYLINDRICAL MEMBRANE 419

R

Jo(anRy) ’ rf(r)U,(a,r) dre Dt

Ry

Jo(aan) + Jo(anR2)

+ 272 >
n=1

(12)
For the steady-state, ¢ = o, and

lim M, = M.. = n(C;R} — C,R?)

o0
Z(Cl - Cz)(R% - R%)
2 hl(Rz/R]_)

(13)

The initial amount in the membrane, M, , is given
by

R

M = | “2nrfr)dr (14)

Ry
Considering the special cases we have:

Case (A)

Equation (14) becomes

M; = nC;(R3 — R?) (15)
and eq. (12) and (6) give
m(C; — C3)(R3 — RY)

2 ln(Rz/Rl)

{(C1 - Ci)Jo(anRZ) 9
- — (Cy — C)d,(a,Ry)le ™ *»P

AT Y @Ry + Ju(auRy)]

n=1

Mt = W(CQR% - CIR%) +

(16)

The change in the amount of material in the mem-
brane after a time ¢ is given by M; — M;. The
resultant expression has been given by Crank?®
who, however, denotes this quantity by M.

Case (B)
Eq. (14) becomes

M, = n(C5R35 — CiR?)

m(Ci — C5)(R5 — RY)
2 ln(Rg/Rl)

(17)

and eq. (12) and (9) combine to give

m(Cy — Cy)(R3 — RY)

M, = n(C,R2 —
v = m(CRy 2 In(R,/R;)

C.R%) +

{(Cé_ CZ)Jo(aan) ,
— (Ci - Cl)Ju(anR2)}eia"Dt
a2{d,(anRy) + Jo(anR2)}

+ 4 (18)
n=1

FLUX, J(r, t), PER UNIT LENGTH OF
CYLINDER THROUGH THE PLANE OF
RADIUS r

This flux is given by

D oC(r, t)

J(r,t) = -2
(r,®) T or

(19)

which with eq. (3) and (A3) gives

J(r, t)

_ 27TD(Cl - Cg)
"~ In(R./Ry)
{CZJo(aan) - ClJo(anRQ)} R
c Jo(anR1)(anr)Ul(anre o™
X Z 2 — 12
Jo(aan) Jo(anRZ)

n=1

+ 272D

a2J2(anRy)* (agr) Ul (ayr)e i

3
—7°D
D2 Ji(anRy) — J3(anRs)

n=1

RZ
Xf rf(r)U,(a,r) dr (20)

Ry

The corresponding expressions for J(R,, ¢) and
J(Rg, t) follow in a straightforward fashion using

the expressions for U}(«,R,) and U/(«a,R,) given
in the Appendix and for the special cases we have

Case (A)
From eq. (20) and (6)

J(r, t)

_ 27TD(Cl - Cz)
In(Ry/R,)
{(Cy — C)d(anRy)
- (Cl - Ci)Jo(anRQ)}Jo(aan)
Xa,r Ul (ayr)e Dt

X
ngl Jg(O[an) - Jg(anRZ)

+ 272D

(21)
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and for

Case (B)

From eq. (20) and (9)

J(r, t)

_ 27TD(C]_ - Cg)
"~ In(Ry/R;)

{(Cz - Cé)Jo(aan)
- (Cy = CDI(anR2)}d(anRy)
« g X (ayr) Ul (ayr)e P
J2(anRy) — J2(anRy)

+ 272D

(22)

Again, the expressions for J(R;, t) and J(Ry, t)
follow readily from eq. (21),(22), (A4), and (A5).

Amount Transported, Q(r, t), Across the Plane of
Radius r

Q(r,t)=f J(r,t)dtz—f 27erZ—Sdt (23)

which with eq. (20) gives

Q(r,t)

_ 27TD(Cl - Cz)t
~ In(R/Ry)
{C2Jo(anR1)
- ClJo(anRZ)}Jo(aan)
o Z X (ayr)Ug(ar){1 — e )
n ai{Jg(aan) - Jg(anRZ)}

=1

+ 272

J%(anRO'(anr)Ué(aznr)

* _ ,—azbt

D W alt 2 ) }
Jo(aan) - Jo(anRZ)

n=1

R2
Xf rf(r)U,(a,r)dr (24)

Ry

from which Q(R,, t) and Q(R,, t) follow using eq.
(A4) and (A5), respectively.
For the special cases we have:

Case (A)
Eq. (24) and (6) give

_ 27TD(Cl - Cz)t
QO = RJRy
{(Cz - Ci)Jo(aan)
= (C1 = Ci)d(anRo) o (anR1) (ar)
X Ular){l — e i}
aZ{J2(a,R)) — J2(anRy)}

+ 72

X2
n=1

(25)
and for

Case B
From eq. (24) and (9)

_ 2’/TD(Cl - Cg)t
Qr 8 == "R R)

{(Cz - Cé)Ja(aan)
- (C; = C)I(anR) Vo (an Ry ) (ayr)
X Ul(ayr){l — e}
aZ{J2(a,Ry) — Ji(a,Rs))

+ 272

X2
n=1

(26)

Again the corresponding quantities Q(R,, t) and
Q(R;, t) follow readily.

CONSTRAINTS ON G, AND G,

At this point no constraint has been placed on the
relative magnitudes of C; and C,. There are two

possibilities.

a) C; = C, : constant pressure sorption/
desorption kinetics

b) C; # C, : transport through the cylin-
der wall

We now consider in turn the modifications to the

expressions for C(r, t) [eq. (7)], M, [eq. (16)],

J(r, t) [eq. (21)] and Q(r, ¢) [eq. (25)] for the

two initial distributions [case (A) and case (B)]

when the constraints (a) and (b) are imposed.
a) Cl = CQ = CO

For CASE (A), Eq. (7) becomes

C(r,t)=Cy— n(Coy — C;)

* 701I21Dt
% Jo(an R U,(ayre (2T
o JolanRy) + Jo(a,Ry)




Eq. (16) becomes

M, = 7Cy(R3 — RY) — 4n(C, — C))

y Z {Jo(anRy) — Jo(@nRy)le @D
n=1 a?l{Jo(aan) + Jo(anR2)}
and
M-M _, 4
M. — M, (R5 — RY)

% {Jo(aan) - Jo(anR2)}eia'2‘Dt
ar{do(anRy) + Jo(anRs)}

n=1

Also, eq. (21) becomes

J(r,t) = 2n2D(C, — C;)
g Jo(anR1) (o) Ul (ayr)e
Jo(aan) + Jo(anRZ)

n=1

which with eq. A4 and A5 gives

J(Ry, t) = —47D(C, — Cy)

" g J,(a, Ry )e *adt
2 I (anRy) + I (anRy)

and
J(Ry, t) = —47D(C, — C})

o g J,(a,Ry)e *aDt
£ I (anRy) + I (anRy)

Eq. (25) becomes

Q(r,t) = 27%(C, — C;)
o Z Jo(anzjlxanr)Ug(anr){l — e i)
L aitdy(anRy) + Jo(anRy))
so that
Q(Rs, t) = —4n(C, — C;)
§ Jo(anR1){1 — e i)
a2{d () + Jo(anR2))

n=1

and
Q(R,y,t) = —4n(C, — C;)

= J(anRy) {1 — e i)
2 I (anRy) + I, (anR)]

n=1

For CASE (B), eq. (10) becomes
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(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

Cr,t)=C, — =

{(Co - Cé)Jo(aan)
- (Co - Ci)Jo(anRZ)}Jo(aan)

- X Uy(ayr)e =
8 ,Zl Ji(anRy) — J2(anRy) (36)
Eq. (18) becomes
M, = 7C,(R3 — R}) — 4r
) {(Co(—CCé)gol()ajl?l)R "
8 Zl aﬁ{J:(aanl) i ?IZ(;HRZ)} (37)

and eq. (22) becomes

J(r,t)=2r*D

{(Co - Cé)Jo(aan)
—(Cy = CDdo(anRy) o (anRy)(ayr)
X Ul (anr)e
J2(anR1) — J2(anRy)

X2
n=1

(38)
Then,

J(RQ, t) = _47TD

{(Co - Cé)Jo(aan) N
B (CO - Ci)Jo(anRz)}Jo(aan)eianDt
Jg(aan) - Jg(anRZ)

X X
n=1
(39)
and

J(Ry,t) = —4nD

{(Co - Cé)Jo(aan) g
= (Cy = CJ(anR3)}do(anRp)e *n™
Jo(anRy) — I3 (anRy)

X 2
n=1
(40)
Also,
Q(r,t) = 2n?
{(Co - Cé)Jo(aan)
— (Co — C1)do(anRs)}do(anR1)(anr)

X Ullagr){l — e P}
) a2{J%(a,Ry) — J2(a,R,))

X
iMS

(41)
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so that

Q(R27 t) = _4’/T
{(Co - Cé)Jo(aan)
- (Co - Ci)Jo(anR2)}Jo(anR1)

- X {1 _ e_QTZ‘Dt}
XL T N P (wR) - SRy )

and

Q(Rl, t) = _47T

{(Co - Cé)Jo(aan)
- (Co - Ci)Jo(anRZ)}Jo(anRZ)

X'y XU —e ") (43)
n=1

aﬁ{Jg(aan) - Jg(anRZ)}

For the constraint,
(b) C, = Cy:
all previous equations containing C; and C; apply.
We need to consider C; > C, and C; < C,, but in
so doing we restrict our considerations to C; = C;
and C; = C, for CASE (A) only, i.e., (f(r) = C;).

The following notation is introduced:

C, > C, defines “forward” flow (in direction of
r increasing)

C, < C, defines “reverse” flow (in direction of
r decreasing)
and the following boundary conditions considered:

(I) C, + Cy, = C;

(IT) C, + C; = C;
System (I) includes the cases of forward adsorp-
tion flow (C; > C; = C;) and reverse, desorption
flow (C; < C, = C;). The expressions given below
are for forward adsorption flows. The correspond-
ing expressions for reverse, desorption flows are
obtained by interchanging C; and Cs,.

From eq. (7)

_ CiIn(Ry/r) + Cyln(r/Ry)
- In(Ry/R;)

Jﬂ(al’lRl)Jo(anR2) Uo(anr)e—arlet

C(r,t) + 7(Cy — Cy)

<3

44
n=1 Jg(C{an) - Jg(anRZ) ( )
From eq. (16)
M, = 7(CyR% — C;R?)
m(C, — Cy)(R35 — R%)
4
2In(R/Ry) "
* — 704%Dt
(Cy — Cy)d (a,Ry)e (45)

z arzl{Jo(aan) + Jo(anRZ)}

n=1

From eq. (21)

_ 27TD(Cl - Cz) _ 9 _
J(r,t)——ln(Rz/Rl) 2 D(Cl CQ)
Jo(aan)Jo(anR2)
X (aar)Ullaarie =i
46
ngl Jg(aan) - Jg(anRZ) ( )
so that
_ 27TD(Cl - Cz) _
J(RQ, t) = 1n(R2/R1) + 47TD(Cl Cg)
2 Jo(anR) I, (anRy)e
X 47
2 Ry - SRy D
and
_ 27TD(Cl - Cz) _
J(Rl, t) = —ln(Rz/Rl) + 47TD(Cl Cz)
- J2(,Ry)e
48
,El Ji(anRy) — J2(anRy) (48)
From eq. (25)
27TD(C]_ — Cg)t 9
= —m————————mn-- 2 J—
Q(",t) In(R,/R,) m*(Cy C,)
Jo(anR1)d(anRy)
X () Ullaar){1 — e =)
X 49
ngl a?l{Jg(aan) - Jg(anRZ)} ( )
_ ZWD(Cl - Cg)t _
Q(R,, t) _—1H(R2/R1) + 47(C; — Cy)
- Jo(aan)Jo(anRZ){l - e—aEDt}
X 50
,Zl an{di(anRy) — J5(anRs)) (50)
and
_ ZWD(Cl - Cg)t _
Q(Ry, t) _—1H(R2/R1) + 47(C; — Cy)
© 2 _ ,—a2Dt
Jo(anRQ){l e } (51)

,Zl Ozﬁ{Jg(aan) - J(z;(anRz)}
System (1I) includes the cases of forward, desorp-
tion flow (C; = C; > C,) and reverse, adsorption
flow (C; = C; < C,). The expressions given below
are for forward, desorption flows. The correspond-
ing expressions for reverse, adsorption flows are
obtained by interchanging C; and Cs,.
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As for system (I) we now have,

_ CiIn(Ry/r) + Coln(r/Ry)

Cir,t) In(R,/R,)

+ w(C; — Cy)

% J2(anRy) U, (ayr)e o
J2(anRy) — J2(anRy)

n=1

(52)

TI'(Cl - Cz)(R% - R%)

M — 2 2
¢ = m(CoR3 — C1R7) + 2 In(Ry/Ry)

Jo(anRy)e P

+47(C; — Cy) Y a2{J, (a,Ry) + J,(a,Ry)}

n=1

(53)

_ 27TD(CI - Cz)

J(r, t) = — 272D(C, — C
) = A RJRD ™ D(C = Cy)

Jg(aan)(OZrJ‘)U(')(anr)e*“EDi
Jo(anRy) — J3(anRs)

Xy (54)

n=1

27D(C; — Cy)

I(B, 1) = In(Ry/R,)

+ 47TD(Cl - Cz)
- J2(a,Ry)e

“ 2 TRy - TRy O

27TD(Cl - Cg)

I(Ey, 0) = In(Ry/R;)

+ 47TD(Cl - Cz)
x5 JolenB)dy(a,Ryle
Jo(anR) — J5(anRy)

n=1

(56)

_2wD(C =Gty
Q.8 == Ry 272(C; — Cy)

= J2(anR)(anr)Ul(ar){l — e D%}
X Z 2 2 _ 2
n=1 an{Jo(aan) Jo(anRZ)}

(57)

_ 2’7TD(Cl - Cz)t

Q(Rs, t) = In(Ro/Ry) + 47(C; — Cy)

g J2(anRy){1 — e @)
aZ{J2(ayR;) — J2(anRy)}

n=1

(58)

27TD(C1 - Cg)t
ln(Rg/Rl)

y % Jo(anR1) I (anRy) (1 — e~}
n=1 ai{J%(aan) - Jg(anRQ)}

Q(Ry,t) = + 4n(Cy — Cy)

(59)

Relations Between Forward and Reverse Flow
Quantities’

Subscripts a and d denote “adsorption” and “de-
sorption,” respectively, and the superscript * de-
notes “reverse” flow.

From eq. (44) to (59) we have:

Cu(r,t) + Ci(r, t)
=Ca(r,t) + Ci(r,t) = C: + C; (60)

(M) + (M§)a
= (M)a + (M¥), = 7(R5 — R1)(Cy + Cy) (61)

Ju(r,t) = =J§(r, t) (62)
Ja(r,t) = =J¥(r, t) (63)
Qu(r, t) = -Qi(r, t) (64)
Qu(r,t) = -Qi(r, t) (65)

Finally,

Ja(RZy t) = _J:f(R27 t)
= Jd(Rl, t) = _J;R(Rl, t) (66)

and so

Qa(Ry, t) = —QF(Rz, 1)
= Qd(Rl) t) = _Q;R(Rl) t) (67)

The time lags for diffusion pertaining to the quan-
tities of eq. (66) and (67) have been discussed
elsewhere.’
APPENDIX

From eq. (4) we have

Uo(anr) = Jo(anr)Yo(anRZ) - Jo(anRZ)Yo(anr)
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Then, >
RZ
a) rU,(a,r) dr
Ry
_ 2{Jo(anR1) - Jo(anRZ)}
WaiJo(aan)
R2
b) r-In(r)(Uy(a,r) dr
Ry

_ 2{Jo(anR1)1n(R2) - Jo(anRZ)ln(Rl)}

WaﬁJo(aan)

0 Usar) =+ LU, (awr)
a, dr

(A1)

(A2)

(A3)

giving
d) Ui(anRs) = —2/ma, Ry

2 . Jo(anR2)
Waan Jo(aan)

(A4)

e) Us(anRy) = — (A5)
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